
anygui
Reference

Manual

Magnus Lie Hetland
Anygui 0.1.1 February 8th, 2002

Magnus Lie Hetland Anygui: Generic GUI for Python 2

Contents

1 Introduction 3
1.1 Design Goals . 3
1.2 Warning . 3
1.3 Tutorial . 3

2 Installation 4
2.1 Running setup.py . 4
2.2 Doing it Manually . 4
2.3 Making Sure You Have a Usable GUI Package 5

3 Using Anygui 6
3.1 Avoiding Namespace Pollution 6
3.2 Importing the Backends Directly 7
3.3 Creating a Window . 7
3.4 The set Method and the Options Class 8
3.5 The modify Method . 8
3.6 The refresh Method . 9
3.7 Adding a Label . 10
3.8 Layout: Placing Widgets in a Frame 10

3.8.1 Placing More Than One Widget 10
3.9 Buttons and Event Handling . 11
3.10 About Models, Views, and Controllers 11
3.11 Using CheckBoxes . 13
3.12 RadioButtons and RadioGroups 13
3.13 ListBox . 14
3.14 TextField and TextArea . 14
3.15 Making Your Own Components and LayoutManagers 14

4 API Reference 15
4.1 Environment Variables . 15
4.2 Global Functions . 17
4.3 Classes . 20

5 Known Problems 26

6 Plans for Future Releases 26

7 Contributing 27

8 Anygui License 27

This manual describes the package Anygui, a generic GUI module for Python. The latest version
of this manual and the software distribution is available from http://www.anygui.org. More
information about Python can be found at http://www.python.org.

Magnus Lie Hetland Anygui: Generic GUI for Python 3

1 Introduction

The Python standard library currently does not contain any platform-
independent GUI packages. It is the goal of the Anygui project to change this
situation. There are many such packages available, but none has been defined
as standard, so when writing GUI programs for Python, you cannot assume that
your user has the right package installed.

The problem is that declaring a GUI package as standard would be quite con-
troversial. There are some packages that are quite commonly available, such
as Tkinter; but it would not be practical to require all installations to include
it, nor would it be desirable to require all Python GUI programs to use it, since
there are many programmers who prefer other packages.

Anygui tries to solve this problem in a manner similar to the standard anydbm
package. There is no need to choose one package at the expense of all others.
Instead, Anygui gives generic access to several popular packages through a
simple API, which makes it possible to write GUI applications that work with
all these packages. Thus, one gets a platform-independent GUI module which
is written entirely in Python.

To get the latest Anygui distribution, or to get in touch with the developers,
please visit the Anygui website: http://www.anygui.org.

1.1 Design Goals

A. Anygui should be an easy to use GUI package which may be used to create
simple graphical programs, or which may serve as the basis for more complex
application frameworks.

B. Anygui should be a pure Python package which serves as a front-end for as
many as possible of the GUI packages available for Python, in a transparent
manner.

C. Anygui should include functionality needed to perform most GUI tasks, but
should remain as simple and basic as possible.

1.2 Warning

The Anygui API is currently very much in flux as the Anygui team keeps experi-
menting with it. Because of that, incompatibilities may occur between releases.
The current release (0.1.1) should be regarded as a prototype.

1.3 Tutorial

There is also a short tutorial available, which is included in the installation
(doc/tutorial.txt) and is available from the website (http://www.anygui.
org).

Magnus Lie Hetland Anygui: Generic GUI for Python 4

2 Installation

The Anygui package comes in the form of a gzip compressed tar archive. To
install it you will first have to uncompress the archive. On Windows this can be
done with WinZip. in Mac OS, you can use StuffIt Expander. In Unix, first move
to a directory where you’d like to put Anygui, and then do something like the
following:

foo:~/python$ tar xzvf anygui-0.1.1.tar.gz

If your version of tar doesn’t support the z switch, you can do something like
this:

foo:~/python$ zcat anygui-0.1.1.tar.gz | tar xvf

Another possibility is:

foo:~/python$ gunzip anygui-0.1.1.tar.gz
foo:~/python$ tar -xvf anygui-0.1.1.tar

No matter which version you choose, you should end up with a directory
named anygui-0.1.1.

2.1 Running setup.py

The simple way of installing Anygui is to use the installation script that’s in-
cluded in the distribution. This requires Distutils (http://www.python.org/
sigs/distutils-sig), which is included in Python distributions from version
2.0. To install the Anygui package in the default location, simply run the setup
script with the install command:

foo:~$ python setup.py install

This will install Anygui in your standard Python directory structure. If you
don’t have access to this directory (e.g. because Python was installed by a
sysadmin, and you don’t have root access) you can install it somewhere else
with the --prefix option:

foo:~$ python setup.py install --prefix=${HOME}/python

2.2 Doing it Manually

Since Anygui consists of only Python code, nothing needs to be compiled. And
the only thing needed to install Python code is to ensure that the packages and
modules are found by your Python interpreter. This is as simple as including
the lib directory of the Anygui distribution in your PYTHONPATH environment
variable. In bash (http://www.gnu.org/manual/bash/), you could do some-
thing like this:

Magnus Lie Hetland Anygui: Generic GUI for Python 5

foo:~$ export PYTHONPATH=$PYTHONPATH:/path/to/anygui/lib

To make this permanent, you should put it in your .bash_profile file, or
something equivalent. If you don’t want to mess around with this, and al-
ready have a standard directory where you place your Python modules, you
can simply copy (or move) the anygui package (found in anygui-0.1.1/lib)
there, or possibly place a symlink in that directory to the anygui package.

2.3 Making Sure You Have a Usable GUI Package

Once you have Anygui installed, you’ll want to make sure you have a usable
GUI package. This is easy to check: Simply start an interactive Python inter-
preter and try to execute the following:

>>> from anygui import *
>>> backend()

The backend function will return the name of the backend in use. If it is nei-
ther ’curses’ nor ’text’ you should be all set for making GUI programs with
Anygui. (The ’curses’ and ’text’ backends use plain text to emulate graph-
ical interfaces on platforms that don’t have them.) Anygui currently supports
the following packages:

PythonWin (mswgui) http://starship.python.net/crew/mhammond/win32
Tkinter (tkgui) http://www.python.org/topics/tkinter
wxPython (wxgui) http://www.wxpython.org
Java Swing (javagui) http://www.jython.org
PyGTK (gtkgui) http://www.daa.com.au/~james/pygtk
Bethon (beosgui) http://www.bebits.com/app/1564
PyQt (qtgui) http://www.thekompany.com/projects/pykde
Curses (cursesgui) -- used when no GUI package is available
Plain text (textgui) -- used if curses is not available

Add gui to name returned by the backend function to get the full name of
the backend module (in the anygui.backends package). For instance, the msw
backend is found in anygui.backends.mswgui module.

In general, if you end up with a text-based solution, cursesgui will be pre-
ferred over textguiif your Python-installation has a wrorking curses module.
The exception is if you are using Anygui in the interactive interpreter, in which
textgui will be preferred, to avoid interfering with the terminal and locking
up the interpreter prompt. (If you’d like to, for some reason, you can override
this behaviour with the environment variable ANYGUI_FORCE_CURSES; see the
API Reference below.)

BeOS Note: The BeOS backend (beosgui) is currently not fully functional, but
is included nonetheless.

Of these, Tkinter is compiled in by default in the MS Windows distribution of
Python (available from http://www.python.org), PythonWin (as well as Tk-
inter) is included in the ActiveState distribution, ActivePython (available from

Magnus Lie Hetland Anygui: Generic GUI for Python 6

http://www.activestate.com), and Java Swing is automatically available in
Jython, the Java implementation of Python.

Note: In Mac OS 9, Anygui (using Tkinter) works with with Python Classic and
recent versions of Python Carbon, but older versions have problems with Tkin-
ter.

3 Using Anygui

Note: For some examples of working Anygui code, see the test and demo di-
rectories of the distribution. Remember that the test scripts are written to test
certain features of Anygui, not to represent recommended coding practices.

Using Anygui is simple; it’s simply a matter of importing the classes and func-
tions you need from the anygui module, e.g.:

from anygui import *

After doing this you must create an Application object, at least one Window,
and probably a few components such as Buttons and TextFields. The Windows
are added to the Application (through its add method), and the various com-
ponents are added to the Window. When you have done this, you call the run
method of your Application instance.

Make components here
win = Window()
Add components to the Window
app = Application()
app.add(win)
app.run()

3.1 Avoiding Namespace Pollution

Importing everything from Anygui (as in from anygui import *) is fine for
small programs, where you’re certain that there will be no name clashes. You
may also simply import the names you need:

from anygui import Application, Window

The preferred way to use modules like this is usually to avoid cluttering your
namespace, by using simply import anygui. However, if you are going to
create a lot of widgets, the anygui prefix may be cumbersome. Therefore, I
suggest renaming it to gui, either with a simple assignment...

import anygui; gui = anygui

... or, in recent versions of Python:

Magnus Lie Hetland Anygui: Generic GUI for Python 7

import anygui as gui

Then you can instantiate widgets like this:

win = gui.Window()

The examples in this documentation use the starred import, for simplicity.

3.2 Importing the Backends Directly

If you wish to import a backend directly (and “hardwire it” into your program),
you may do so. For instance, if you wanted to use the wxPython backend,
wxgui, you’d replace

from anygui import *

with

from anygui.backends.wxgui import *

This way you may use Anygui in standalone executables built with tools
like py2exe (http://starship.python.net/crew/theller/py2exe/) or the
McMillan installer (http://www.mcmillan-inc.com/install1.html), or with
jythonc with the --deep option or equivalent.

Note: Compiling jar files of Anygui programs with Jython may not work in the
current version.

Note that the namespace handling still works just fine:

import anygui.backends.tkgui as gui

3.3 Creating a Window

One of the most important classes in Anygui is Window. Without a Window you
have no GUI; all the other widgets are added to Windows. Knowing this, we
may suspect that the following is a minimal Anygui program (and we would
be right):

from anygui import *
app = Application()
win = Window()
app.add(win)
app.run()

This example gives us a rather uninteresting default window. You may cus-
tomise it by setting some of its properties, like title and size:

Magnus Lie Hetland Anygui: Generic GUI for Python 8

w = Window()
w.title = ’Hello, world!’
w.size = (200, 100)

If we want to, we can supply the widget properties as keyword arguments to
the constructor:

w = Window(title=’Hello, world!’, size=(200,100))

3.4 The set Method and the Options Class

If you want to change some attributes of a widget, you can either just set them
directly, or (if you’d like to set several at once), use the set method, just like
the constructor:

w.set(title=’Hello, again’, size=(300,200))

Supplying the same attributes with the same values to a lot of widgets (if you
are making several buttons with the same size, for instance) can be a bit im-
practical (you’ll learn more about buttons in a little while):

bt1 = Button(left=10, width=50, height=30, text=’Button 1’)
bt2 = Button(left=10, width=50, height=30, text=’Button 2’)
bt3 = Button(left=10, width=50, height=30, text=’Button 3’)

To deal with this, the widget constructors (and the set method) can take
Options objects as positional parameters:

opt = Options(left=10, width=50, height=30)
bt1 = Button(opt, text=’Button 1’)
bt2 = Button(opt, text=’Button 2’)
bt3 = Button(opt, text=’Button 3’)

As you can see, this saves quite a lot of typing. You can use as many Options
arguments as you like.

3.5 The modify Method

Just like set can be used to set the attributes of a Component, the modifymethod
can be used to modify them, without rebinding them to another value. To show
the difference, consider the following example (where foo is an attribute that
does nothing special):

>>> from anygui import *
>>> btn = Button()
>>> some_list = [1, 2, 3]

Magnus Lie Hetland Anygui: Generic GUI for Python 9

>>> btn.foo = some_list
>>> btn.modify(foo=[4, 5, 6])
>>> btn.foo
[4, 5, 6]
>>> some_list
[4, 5, 6]
>>> btn.set(foo=[7, 8, 9])
>>> btn.foo
[7, 8, 9]
>>> some_list
[4, 5, 6]

As you can see, using modify modifies the list, while set replaces it. The
modify method is used for (among other things) implementing Model-View-
Controller systems. (More about that later.)

The modify method works as follows: If there is a specific internal method
for modifying an attribute, that is called. Otherwise, the supplied value will
be assigned to self.name[:] (where name is the attribute in question). If that
doesn’t work (a TypeError exception is raised), the value will be assigned to
self.name.value. If that doesn’t work either, the attribute will be rebound to
the new value, with the same result as using set. So, to avoid any in-place
modification, all you need to do is use immutable values:

>>> from anygui import *
>>> btn = Button()
>>> some_list = [1, 2, 3]
>>> btn.foo = tuple(some_list)
>>> btn.modify(foo=[4, 5, 6])
>>> btn.foo
[4, 5, 6]
>>> some_list
[1, 2, 3]

3.6 The refresh Method

The modify method is used to modify attributes in-place, e.g. to keep them
in sync with a widget. This is done automatically when you change a widget
through the graphical interface. In a way, the refresh method works the other
way: If you modify an attribute, you can call the refresh method to keep the
widget’s appearance in sync with its state. When you assign to an attribute,
refresh is called automatically; you only have to call it yourself if you have an
attribute which is a mutable object, and you modify that object.

For more info about the use of refresh, see the section “About Models, Views,
and Controllers”, below.

Magnus Lie Hetland Anygui: Generic GUI for Python 10

3.7 Adding a Label

Simple labels are created with the Label class:

lab = Label(text=’Hello, again!’, position=(10,10))

Here we have specified a position just for fun; we don’t really have to. If we
add the label to our window, we’ll see that it’s placed with its left topmost
corner at the point (10,10):

w.add(lab)

3.8 Layout: Placing Widgets in a Frame

This section goves a simple example of positioning Components; for more infor-
mation about the Anygui layout mechanism, please refer to the API Reference
(below).

win.add(lab, position=(10,10))
win.add(lab, left=10, top=10)
win.add(lab, top=10, right=10)
win.add(lab, position=(10,10), right=10, hstretch=1)

In the last example hstretch is a Boolean value indicating whether the widget
should be stretched horizontally (to maintain the other specifications) when
the containing Frame is resized. (The vertical version is vstretch.)

Just like in component constructors, you can use Options objects in the add
method, after the component to be added:

win.add(lab, opt, left=10)

3.8.1 Placing More Than One Widget

The add method can also position a sequence of widgets. The first widget will be
placed as before, while the subsequent ones will be placed either to the right,
to the left, above (up), or below (down), according to the direction argument,
at a given distance (space):

win.add((lab1, lab2), position=(10,10),
direction=’right’, space=10)

Note: Remember to enclose your components in a sequence (such as a tuple
or a list), since add allows you to use more positional arguments, but will treat
them differently. If you want to use Options objects, place them outside (after)
the sequence. For more information see the section about the Frame class in the
API Reference below.

Magnus Lie Hetland Anygui: Generic GUI for Python 11

3.9 Buttons and Event Handling

Buttons (as most components) work more or less the same way as Labels.
You can set their size, their position, their text, etc. and then add them to a
Frame (such as a Window). The thing that makes them interesting is that they
emit events. Each time the user clicks a button, it sends out a click event. You
can catch these events by linking your button to one or more event handlers. It’s
really simple:

btn = Button(text=’Greet Environment’)
def greeting(**args):

print ’Hello, World!’
link(btn, greeting)

The event handling is taken care of by the call to link. An event handler may
receive several keyword arguments, and if you’re not particularly interested in
any of them, simply use something like **args above. (For more information
about this, see the section about global functions in the API Reference below.)

3.10 About Models, Views, and Controllers

The Anygui MVC mechanism (based on the refresh method and the Assignee
protocol) is described in the API Reference below. Here is a short overview on
how to use it.

A model is an object that can be modified, and that can notify other objects,
called views, when it has been modified. A controller is an object that can mod-
ify the model, in particular as a direct response to a user action (such as clicking
the mouse or typing some text). In Anygui, Components double as both views
(showing a model’s state to the user) and controllers (letting the user modify
the model). Even though Anygui supports using models this way, you can also
create complete application without using them.

Models are in general instances of some subclass of the Model class, although
they don’t have to be; see the API Reference below for a description of how
they work. (The Model class is currently internal to the Anygui package, but it
can be found int he anygui.Models module.) The Models that are included in
Anygui are:

BooleanModel -- represents a Boolean value
ListModel -- behaves like a list
NumberModel -- represents a numerical value
TextModel -- acts like a mutable string

These all have a value attribute which may be used to change their internal
value. They also support other operations, such as indexing and slicing etc. for
ListModel. These are very easy to use: Just assign them to an attribute of a
Component:

Magnus Lie Hetland Anygui: Generic GUI for Python 12

You’ll learn about CheckBoxes in a minute
cbx = CheckBox(text=’Simple model test’)
state = BooleanModel(value=1)
cbx.on = state

Now, if you change state (e.g. with the statement state.value=0) this will
automatically be reflected in the CheckBox (which will be acting like a view). If
the user clicks the CheckBox, the model will be changed.

To keep a view up-to-date manually you can call its refresh method. This can
be useful if you use a simple (non-Model) mutable value such as a list in an
attribute:

btn = Button()
rect = [0, 0, 10, 10]
btn.geometry = rect
rect[3] = 20
btn.refresh()

After modifying rect, the button will not have changed, since it can’t detect the
change by itself. (That’s only possible when you use a real model.) Therefore,
you call btn.refresh to tell it to update itself.

If you assign a value to an attribute, the refresh method will be called auto-
matically, so another way of doing the same thing is:

btn = Button()
rect = [0, 0, 10, 10]
btn.geometry = rect
rect[3] = 20
btn.geometry = rect

Warning: Because of the controller behaviour of Components, if the Button is
resized, rect will be modified. If you don’t want this behaviour, use a tuple
instead of a list, since tuples can’t be modified.

If you want another object to monitor a model, you can simply use the link
method, since all models generate an event (of the type default) when they
are modified.

Example:

from anygui import *
>>> mdl = BooleanModel()
>>> mdl.value = 1
>>> def model_changed(**kw):
>>> print ’The model has changed!’

>>> link(mdl, model_changed)
>>> mdl.value = 0
The model has changed

Magnus Lie Hetland Anygui: Generic GUI for Python 13

>>> mdl.value = 0
The model has changed

Note the last two lines: We haven’t really changed the model, but the event
handler is called nonetheless. If you want to know whether the model really
changed, you must retain a copy of its state, and compare the new value.

3.11 Using CheckBoxes

A CheckBox is a toggle button, a button which can be in one of two states, “on”
or “off”. Except for that, it works more or less like any other button in that you
can place it, set its text, and link an event handler to it.

Whether a CheckBox is currently on or off is indicated by its on attribute.

3.12 RadioButtons and RadioGroups

RadioButtons are toggle buttons, just like CheckBoxes. The main differ-
ences are that they look slightly different, and that they should belong to a
RadioGroup.

A RadioGroup is a set of RadioButtons where only oneRadioButton is permit-
ted to be “on” at one time. Thus, when one of the buttons in the group is
turned on, the others are automatically turned off. This can be useful for se-
lecting among different alternatives.

RadioButtons are added to a RadioGroup by setting their group property:

radiobutton.group = radiogroup

This may also be done when constructing the button:

grp = RadioGroup()
rbn = RadioButton(group=grp)

Note: The behaviour of a RadioButton when it does not belong to a
RadioGroup is not defined by the Anygui API, and may vary across backend.
Basically, a RadioButton without a RadioGroup is meaningless; use a CheckBox
instead.

RadioGroups also support an add method, as all other Anygui container-like
objects:

add(button)

Adds the button to the group, including setting button.group to the group. As
with the other add methods, the argument may be either a single object, or a
sequence of objects.

Magnus Lie Hetland Anygui: Generic GUI for Python 14

3.13 ListBox

A ListBox is a vertical list of items that can be selected, either by clicking on
them, or by moving the selection up and down with the arrow keys. (For the
arrow keys to work, you must make sure that the ListBox has keyboard focus.
In some backends this requires using the tab key.)

Note: When using Anygui with Tkinter, using the arrow keys won’t change the
selection, only which item is underlined. You’ll have to use the arrow keys
until the item you want to select is underlined; then select it by pressing the
space bar.

A ListBox’s items are stored in its attribute items, a sequence of arbitrary ob-
jects. The text displayed in the widget will be the result of applying the built-in
Python function str to each object.

lbx = ListBox()
lbx.items = ’This is a test’.split()

The currently selected item can be queried or set through the selection prop-
erty (an integer index, counting from zero). Also, when an item is selected, a
select event is generated, which is the default event type for a ListBox. This
means that you can either do

link(lbx, ’select’, handler)

or

link(lbx, handler)

with the same result. (This is similar to the click event, which is default for
Buttons; for more information, see the API Reference below.)

3.14 TextField and TextArea

Anygui’s two text widgets, TextField and TextArea are quite similar. The dif-
ference between them is that TextField permits neither newlines or tab charac-
ters to be typed, while TextArea does. Typing a tab in a TextField will simply
move the focus to another widget, while pressing the enter key will send an
enterkey event (which is the TextField’s default event type).

The text in a text component is stored in its text property (a string or equiv-
alent), and the current selection is stored in its selection property (a tuple of
two integer indices).

3.15 Making Your Own Components and LayoutManagers

Currently, you can create your own components by combining others in
Frames, and wrapping the whole thing up as a class. One of the main reasons

Magnus Lie Hetland Anygui: Generic GUI for Python 15

for doing this would be to emulate a feature (such as a tabbed pane) available
in some backends, but not in others. One could then actually use the native ver-
sion in the backends where it is available (such as wx, in this case), and use the
“emulation” in the others. There is some limited support for this in the backend
function (which will allow you to check whether you are currently using the
correct backend), but in the future, a more complete API will be developed for
this, allowing you access to the coolest features of your favorite GUI package,
while staying “package independent”.

You can already create your own layout managers, by properly supporting
the methods add, remove, and resized. The simplest way of doing this is to
subclass LayoutManager, which gives you the add and remove methods for
free. You can then concentrate on the method resized which takes two po-
sitional arguments, dw, and dh (change in width and change in height) and is
responsible for changing the geometries of all the components in the Frame
the LayoutManager is managing. (This frame is available through the private
attribute self._container.)

To get more control over things, you should probably also override the two
internal methods add_components and remove_component:

add_components(self, *items, **kws)

Should add all the components in items, and associate them with the options in
kws, for later resizing.

remove_component(self, item)

Should remove the given item.

4 API Reference

The following reference describes the full official API of the current version
(0.1.1) of Anygui.

4.1 Environment Variables

Some environment variables affect the behaviour of the Anygui package. These
must be set in the environment of the program using Anygui. They may either
be set permanently through normal operating system channels (check your OS
documentation for this), or possibly just set temporarily when running your
program. In Unix shells like bash, you can set the variables on the command
line before your comand, like this:

foo:~$ ANYGUI_SOMEVAR=’some value’ python someprogram.py

where ANYGUI_SOMEVAR is some environment variable used by Anygui.

Since Jython doesn’t support OS environment variables, you’ll have to supply
them with the command-line switch -D:

Magnus Lie Hetland Anygui: Generic GUI for Python 16

foo:~$ jython -DANYGUI_SOMEVAR=’some value’ someprogram.py

You can also set these environment variables in your own program, by using
code like the following before you import Anygui:

import os
os.environ[’ANYGUI_SOMEVAR’] = ’some value’

This will probably not work well in Jython, though.

The environment variables used by Anygui are:

ANYGUI_WISHLIST: A whitespace separated list of backend names in the order
you wish for Anygui to try to use them. The backends are identified with a
short prefix such as wx for wxgui, or tk for tkgui. For a full list of available
backends, see the section “Making Sure You Have a GUI Backend” above. Only
the backends in this list will be tried; if you don’t set ANYGUI_WISHLIST, then
the following is the default:

’msw gtk java wx tk beos qt curses text’

If you insert an asterisk in the wishlist, it will be interpreted as “the rest of the
backends, in default order”. So, for instance,

ANYGUI_WISHLIST=’tk wx * text curses’

is equivalent to

ANYGUI_WISHLIST=’tk wx msq gtk java beos qt text curses’

Example:

foo:~$ ANYGUI_WISHLIST=’tk wx qt’ python someprogram.py

ANYGUI_DEBUG: When Anygui tries to import a backend, it hides all exceptions,
assuming they are caused by the fact that a given backend doesn’t work in
your installation (because you don’t have it installed or something similar).
However, at times this may not be the reason; it may simple be that a given
backend contains a bug. To track down the bug, set the ANYGUI_WISHLIST to
some true (in a Python sense) value. (If the value supplied can be converted
to an integer, it will. Otherwise, it will be treated as a string.) This will make
Anygui print out the stack traces from each backend it tries to import.

There is one exception to this rule: If the true value supplied is the name of one
of the backends (such as tk or curses) only the traceback caused by importing
that backend will be shown. This can be useful to make the output somewhat
less verbose.

Example:

Magnus Lie Hetland Anygui: Generic GUI for Python 17

foo:~$ ANYGUI_DEBUG=1 python someprogram.py

ANYGUI_ALTERNATE_BORDER: This Boolean variable affects cursesgui, making
it use the same border-drawing characters as textgui (’+’, ’-’, and ’’—).
This may be useful if your terminal can’t show the special curses box-drawing
characters properly.

ANYGUI_SCREENSIZE: Affects textgui. Gives the terminal (“screen”) dimen-
sions, in characters. This should be in the format widthxheight, e.g. 80x24. If
this environment variable is not supplied, the standard Unix variables COLUMNS
and LINES will be used. If neither is provided, the default size 80x23 will be
used.

ANYGUI_FORCE_CURSES: Normally, cursesgui will not be selected if you are in
the interactive interpreter. If you want to force the normal selection order (try-
ing to use cursesgui before resorting to textgui) you can set this variable
to a true value. Note that this is not the same as setting ANYGUI_WISHLIST to
’curses’, since that will ignore all other backends.

ANYGUI_CURSES_NOHELP: If you don’t want the help-screen that appears when
an Anygui application is started using cursesgui (or textgui), you can set this
variable to a true value.

4.2 Global Functions

application()

Returns the current Application object.

backend()

Returns the name (as used in ANYGUI_WISHLIST) of the backend currently in
use.

Example:

if backend() == ’wx’:
some_wx_code()

else:
some_generic_code()

link(source, [event,] handler, weak=0, loop=0)

Creates a link in the Anygui event system, between the source (any object) and
the handler (any callable, or a (obj,func) pair, where func is an unbound
method or function, and obj is an object which will be supplied as the first
parameter to func). Supplying an event (a string) will make the link carry
only information about events of that type. If no event is supplied, ’default’
will be assumed. Setting weak to a true value will use weak references when
setting up the link, so that no objects will be “kept alive” by the link.

A send-loop occurs if an object sends an event “to itself” (i.e. it is the source
argument of a call to send which hasn’t returned at the point where one of its

Magnus Lie Hetland Anygui: Generic GUI for Python 18

methods are about to be activated as a handler). The truth value loop decides
whether this handler will be activated in such a loop. (If send was called with
loop=1, loops will be allowed anyway.)

Note that source, event, and handler are strictly positional parameters, while
the others (weak, and loop) must be supplied as keyword parameters.

Sometimes one might want an event handler that reacts to a specific event from
any source, or any event from a specific source; or even any event from any
source. To do that, simply use the special value any as either source, event, or
both.

Example:

from anygui import *
>>> def monitor_events(event, **kw):
... print ’An event occurred:’, event
...
>>> link(any, any, monitor_events)
>>> btn = Button()
>>> send(btn, ’foobar’)
An event occurred: foobar

If you use send(btn, ’click’) in this example, you will get two events, since
the Button will detect the click event (which is its default), and issue a
default event as well.

Note: You need to explicitly supply the event type if you want to respond to
any event type; otherwise you will only respond to the default type.

Event handlers that react to the same event will be called in the order they were
registered (with link), subject to the following: (1) All handlers registered with
a specific source will be called before handlers with the value any as source;
(2) all handlers registered with a specific event (including default) are called
before handlers with the value any as event.

For more information on sending events, see send, below.

send(source, event=’default’, loop=0, **kwds)

When this is called, any handlers (callables) linked to the source, but which will
not cause a send-loop (unless loop is true) will be called with all the keyword
arguments provided (except loop), in the order in which they were linked. In
addition to the supplied keyword arguments, the event framework will add
source, event, and the time (as measured by the standard Python function
time.time) when send was called, supplied with the time argument.

Note that source, and event, are strictly positional parameters, while the oth-
ers (loop, and any additional arguments the user might add) must be supplied
as keyword parameters.

Example:

Link an event handler to a button, and then manually send a

Magnus Lie Hetland Anygui: Generic GUI for Python 19

default event from the button. This event would have been
sent automatically if we clicked the button. Note that we
only use the arguments we need, and lump the rest in **kw.

def click(source, time, **kw):
print ’Button %s clicked at %f.’ % (source.text, time)

btn = Button(text=’Click me’)
link(btn, click)

send(btn) # Fake a button click -- will call click()

For information about the order in which event handlers are called, see link,
above.

Important: Due to the current semantics of the any value, using it in send
may not be a good idea, since the result might not be what you expect. For
instance, calling send(any, any) will only activate event handlers which have
been linked to the value any as both source and event, not to “event handlers
with any source and any event”. This may change in future releases. The
current behaviour of send with any is consistent with unlink.

unlink(source, [event,] handler)

Undoes a call to link with the same positional arguments. If handler has been
registered with either source or event as any, that parameter will be irrelevant
when deciding whether or not to remove that link. For instance:

link(foo, any, bar)
unlink(foo, baz, bar)

Here the link created by link(foo, any, bar) will be removed by the call to
unlink.

Note: This behaviour (unlinking handlers registered with the any value) may
change in future releases.

Default Events: When used without the event argument, both link and send
use an event type called default. Most event-generating components have a
default event type, such as click for Buttons. The fact that this event type
is default for Button means that when a Button generates a click event it
will also generate a default event. So, if you listen to both click events and
default events from a Button, your event handler will always be called twice.

unlinkHandler(handler)

Removes a handler completely from the event framework.

unlinkMethods(obj)

Unlinks all handlers that are methods of obj.

unlinkSource(source)

Remove the source (and all handlers linked to it) from the event framework.

Magnus Lie Hetland Anygui: Generic GUI for Python 20

4.3 Classes

Base Classes and Common Behaviour

All components are subclasses of corresponding abstract components which
implement behaviour common to all the backends. So, for instance, Button
subclasses AbstractButton. These abstract components, again, subclass
AbstractComponent, which implements behaviour common to all compo-
nents.

Perhaps the most important behaviour is attribute handling (inherited from the
Attrib mixin), which means that setting a components attributes may trigger
some internal method calls. For instance,

win.size = 300, 200

will automatically resize the component win. Attributes common to all compo-
nents are:

x -- x-coordinate of upper left corner
y -- y-coordinate of upper left corner
position -- equivalent to (x, y)
width -- component width
height -- component height
size -- equivalent to (width, height)
geometry -- equivalent to (x, y, width, height)
visible -- whether the component is visible
enabled -- whether the component is enabled
text -- text associated with the component

These can all be set as keyword arguments to the component constructors.
Also, Options objects (with similar constructors) can be used as positional ar-
guments in the constructor, with all the Options’s attributes being set in the
component as well.

Common to Application, Window, and Frame is the contents attribute, as well
as the add and remove methods. These will be described with the individual
classes below.

All Attrib subclasses (including components, Application, and RadioGroup)
share the following methods:

set(*args, **kwds)

Used to set attributes. Works like the Attrib constructor, setting attributes,
and optionally using Options objects.

modify(*args, **kwds)

Works like the set method, except that the attributes are modified in place. That
means the following (for an attribute named foo): (1) If there exists an internal
method (implemented in Anygui) for modifying the attribute inplace (called
_modify_foo), use that; otherwise (2) try to use slice assignment to change

Magnus Lie Hetland Anygui: Generic GUI for Python 21

the value (will work for lists and ListModels etc.); if that doesn’t work, (3)
assign to the value’s value attribute (used to modify Models. If neither of
these approaches work, simply rebind the attribute (equivalent to using the
set method).

As with set and ordinary attribute assignment, the refresh method will auto-
matically be called when you use modify.

refresh()

When an attribute of a Component (or Application, RadioGroup, or an instance
of another Attrib subclass) is assigned a value, the Component is automatically
updated to reflect its new state. For instance, if you have a Labellbl, assigning
a value to lbl.geometry would immediately change the Label’s geometry, and
assigning to lbl.text would change its text.

This is good enough for most cases, but sometimes an attribute can contain a
mutable value, such as a list, and changing that will not update the Component.
For instance, if you use a list to hold the items of a ListBox, you could end up
in the following situation:

lbx = ListBox()
lbx.items = ’first second third’.split()
More code...
lbx.items.append(’fourth’)

After performing this code, nothing will have happened to the ListBox, be-
cause it has no way of knowing that the list has changed. To fix that, you can
simply call its refresh method:

lbx.refresh()

This method checks whether any attributes have changed, and make sure that
the Component us up to date.

Updating Automatically

Updating Components explicitly can be useful, but sometimes you would want
it to be done for you, automatically, each time you modify an object that is
referred to by a Component attribute. This can be taken care of by link and
send. If your object uses send every time it’s modified, and you link the object
to your Component’s refresh method, things will happen by themselves:

class TriggerList:
def __init__(self):

self.list = []
def append(self, obj):

self.list.append(obj)
send(self)

def __getitem__(self, i):
return self.list[i]

Magnus Lie Hetland Anygui: Generic GUI for Python 22

lbx = ListBox()
lbx.items = TriggerList()
link(lbx.items, lbx.refresh)

Now, if we call lbx.items.append(’fourth’), lbx.refresh will automati-
cally be called. To make your life easier, Anygui already contains some classes
that send signals whend they are modified; these classes are called Models.

Model and Assignee

The Anygui models (BooleanModel, ListModel, TextModel, and NumberModel)
are objects that call send (with the ’default’ event) when they are modified.

An Assignee (part of the Anygui Model-View-Controller mechanism) is an ob-
ject that supports the methods assigned and removed. These are automatically
called (if present) when the object is assigned to one of the attributes of an
Attrib object (such as a Component). Models use this behaviour to automati-
cally call link and unlink, so when the Model is modified, the refresh method
of the Attrib object is called automatically.

All models have a value attribute, which contains a “simple” version of its
state (such as a number for NumberModel, a list for ListModel, etc.) Assigning
to this attribute is a simple way of modifying the model in place.

class Application

To instantiate Windows, you must have an Application to manage them. You
typically instantiate an application at the beginning of your program:

app = Application()
Build GUI and run application

In some cases subclassing Application might be a useful way of structuring
your program, but it is in no way required.

Application has the following methods:

run()

Starts the main event loop of the graphical user interface. Usually called at the
end of the program which set up the interface:

app = Application()
Set up interface
app.run()

add(win)

Adds a Window to the Application, in the same way Components can be added
to Frames (see below). A Window will not be visible until it has been added
to the current Application object, and that Application is running. When
constructing new Windows after Application.run has been called, you should
ensure that you add your Window to your running Application after all the
Components have been added to your Window; otherwise, you may see them

Magnus Lie Hetland Anygui: Generic GUI for Python 23

appearing and moving about as Anygui takes care of the layout. (Before
Application.run is called, this is not an issue, since no Windows will be ap-
pear before that time.)

The parameter win can be either a single Window, or a sequence of Windows.

remove(win)

Removes a Window from the application. This will make the Window disappear.

contents

A read-only property containing a tuple of the Windows the Application cur-
rently manages.

class Button

A component which, when pressed, generate a ’click’ event, as well as
a ’default’ event. Thus, in the following example, both handler1 and
handler2 will be called when the button is pressed:

btn = Button()
def handler1(**kw): print ’Handler 1’
def handler2(**kw): print ’Handler 2’
link(btn, ’click’, handler1)
link(btn, handler2)

class CheckBox

CheckBox is a kind of button, and thus will also generate ’click’ and
’default’ events when clicked. But in addition, each CheckBox has a Boolean
attribute on, which is toggled each time the box is clicked. The state of the
CheckBox can be altered by assigning to this attribute.

The on property will be automatically modified (as per the MVC mechanism)
when the user clicks the CheckBox. This will also cause the CheckBox to send a
click and a defaultevent.

The on attribute is a useful place to use a BooleanModel.

class Frame

Frame is a component which can contain other components. Components are
added to the Frame with the add method:

add(comp, [opts,] **kwds)

Adds one or more components. The parameter comp may be either a single
component, or a sequence of components. In the latter case, all the components
will be added.

The opts parameter containes an Options object (see below) which gives in-
formation about how the object should be laid out. These options can be over-
ridden with keyword arguments, and all this information will be passed to the
LayoutManager (see below) of the Frame, if any. This LayoutManager is stored
in the layout property.

Magnus Lie Hetland Anygui: Generic GUI for Python 24

remove(comp)

Removes a component from the Frame.

contents

This is a read-only property which contains the contents (a tuple of
Components) of the Frame.

class Label

A Label is a simple component which displays a string of text. (Label can only
handle one line of text.)

class LayoutManager

A layout manager is responsible for setting the geometry properties of a
set of components when their parent Frame changes shape. The default
LayoutManager (and the only one supplied with the current release) is the
Placer (see below).

Note: Although Anygui 0.1 comes only with this layout manager, more will
appear in the future.

class ListBox

Shows a list of options, of which one may be selected. The ListBox has two
special attributes: items, a sequence of items to display, and selection, the
currently selected (as an index in the items sequence).

The selection property will be automatically modified (as per the MVC mech-
anism) when the user makes a selection. This will also cause the ListBox to
send a select and a defaultevent.

class Model

See the section on Model and Assignee above.

class Options

Options is a very simple class. It is simply used to store a bunch of named val-
ues; basically a dictionary with a different syntax. (For more information about
the bunch class, see http://aspn.activestate.com/ASPN/Cookbook/Python/
Recipe/52308.)

You can set the attributes of an Options object and then supply it as an optional
first parameter to the constructors of widgets:

opt = Options()
opt.width = 100
opt.height = 50
opt.x = 10
btn = Button(opt, y=10)
lbl = Label(opt, y=70)

Here btn and lbl will have the same width, height, and x attributes, but dif-
fering y attributes.

Magnus Lie Hetland Anygui: Generic GUI for Python 25

You can also set the attributes of an Options object through its constructur, just
like with components:

opt = Options(width=100, height=50, x=10)

Options objects can also be used when supplying arguments to the add method
of Frame:

Assuming a Placer LayoutManager:
opt = Options(left=10, right=10, hstretch=1)
win.add(lbl, opt, top=10)
win.add(btn, opt, top=(lbl,10))

class Placer

A simple but powerful layout manager. When adding components to a Frame
whose layout attribute is set to a Placer, you can supply the following key-
word arguments:

left -- the Component’s left edge
right -- the Component’s right edge
top -- the Component’s top edge
bottom -- the Component’s bottom edge
hmove -- move horizontally on resize
vmove -- move vertically on resize
hstretch -- stretch horizontally on resize
vstretch -- stretch vertically on resize
direction -- ’left’, ’right’, ’up’, or ’down’
space -- spacing between multiple Components

The geometry specifiers (left, right, top, and bottom) can be set to either None
(the default; will use the Component’s existing coordinates), a distance (from the
corresponding Frame edge), a Component (will align the edge with the opposite
edge of the given component), or a tuple (component, distance) (as with only a
Component, except that a gap of size distance is inserted between the two).

The movement arguments (hmove and vmove) specify (with a Boolean value)
whether the Component should be moved (horizontally, vertically, or both) to
maintain the given distance to the surrounding Frame’s edges; the stretching
arguments (hstretch and vstretch) specify whether the Component may be
stretched to maintain these distances.

class RadioButton

A RadioButton is a toggle button, just like CheckBox, with slightly differ-
ent appearance, and with the difference that it belongs to a RadioGroup.
Only one RadioButton can be active (have its on attribute be a true Boolean
value)in the RadioGroup at one time, so when one is clicked or programmati-
cally turned on, the others are automatically switched off by the RadioGroup.
Each RadioButton also has a value attribute, which should be unique within
its RadioGroup. When one RadioButton is active, the value attribute of

Magnus Lie Hetland Anygui: Generic GUI for Python 26

its RadioGroup is automatically set to that of the active RadioButton. The
RadioGroup of a RadioButton is set by assigning the RadioGroup to the group
attribute of the RadioButton. Setting the value attribute of the RadioGroup
will automatically activate the correct RadioButton.

class RadioGroup

See RadioButton above.

class TextArea

A multiline text-editing Component. Its text is stored in the text attribute,
which will be modified (according to the MVC mechanism) when the compo-
nent loses focus. It also supports the Boolean editable property, which may
be used to control whether the user can edit the text area or not.

class TextField

A one-line text-editing Component. (See also TextArea, above.) If the en-
ter/return key is pressed within a TextField, the TextField will send a
enterkey event.

class Window

A window, plain and simple. Window is a type of Frame, so you can add com-
ponents to it and set its layout property etc. To make your window appear,
you must remember to add it to your Application, just like you add other
components to Frames and Windows:

win = Window()
app = Application()
app.add(win)
app.run()

Windows have a title attribute which may be used by the operating system or
window manager to identify the window to the user in various ways.

5 Known Problems

For an overview of known bugs in the current release, see the file KNOWN_BUGS
found in the distribution.

6 Plans for Future Releases

For an overview of future plans, see the TODO file found in the distribution.

Magnus Lie Hetland Anygui: Generic GUI for Python 27

7 Contributing

If you want to contribute to the Anygui project, we could certainly use your
help. First of all, you should visit the Anygui web site at http://www.anygui.
org, subscribe to the developer’s mailing list (devel@anygui.org) and the
user’s list (users@anygui.org), and try to familiarise yourself with how the
package works behind the scenes. Then, you may either help develop the cur-
rently supported GUI packages, or you may start writing a backend of your
own. Several potential backend targets may be found at http://starbase.
neosoft.com/~claird/comp.lang.python/python_GUI.html.

8 Anygui License

Copyright c© 2001, 2002 Magnus Lie Hetland, Thomas Heller, Alex Martelli,
Greg Ewing, Joseph A. Knapka, Matthew Schinckel, Kalle Svensson, Shanky
Tiwari, Laura Creighton, Dallas T. Johnston, Patrick K. O’Brien. .

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY
KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AU-
THORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAM-
AGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

